skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Kassiopeia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding of structural and morphological evolution in nanomaterials is critical in tailoring their functionality for applications such as energy conversion and storage. Here, we examine irradiation effects on the morphology and structure of amorphous TiO2 nanotubes in comparison with their crystalline counterpart, anatase TiO2 nanotubes, using high-resolution transmission electron microscopy (TEM), in situ ion irradiation TEM, and molecular dynamics (MD) simulations. Anatase TiO2 nanotubes exhibit morphological and structural stability under irradiation due to their high concentration of grain boundaries and surfaces as defect sinks. On the other hand, amorphous TiO2 nanotubes undergo irradiation-induced crystallization, with some tubes remaining only partially crystallized. The partially crystalline tubes bend due to internal stresses associated with densification during crystallization as suggested by MD calculations. These results present a novel irradiation-based pathway for potentially tuning structure and morphology of energy storage materials. 
    more » « less
  2. In this paper, ordered TiO 2 nanotubes were grown on a Ti substrate via electrochemical anodization and subsequently annealed at 450 °C for 4 h under various atmospheres to create different point defects. Oxygen-deficient environments such as Ar and N 2 were used to develop oxygen vacancies, while a water vapor (WV) atmosphere was used to generate titanium vacancies. Computational models by density functional theory predicted that the presence of oxygen vacancies would cause electronic conductivity to increase, while the presence of Ti vacancies could lead to decreased conductivity. The predictions were confirmed by two-point electrical conductivity measurements and Mott–Schottky analysis. Raman spectroscopy was also conducted to confirm the presence of defects. The annealed samples were then evaluated as anodes in lithium-ion batteries. The oxygen-deficient samples had an improvement in capacity by 10% and 25% for Ar- and N 2 -treated samples, respectively, while the WV-treated sample displayed a capacity increase of 24% compared to the stoichiometric control sample (annealed in O 2 ). Electrochemical impedance spectroscopy studies revealed that the WV-treated sample's increased capacity was a consequence of its higher Li diffusivity. The results suggest that balanced electrical and ionic conductivity in nanostructured metal oxide anodes can be tuned through defect generation using heat treatments in various atmospheres for improved electrochemical properties. 
    more » « less